

IQUIMEFA

Búsqueda *in silico* de potenciales sitios de unión alostéricos sobre la transcriptasa reversa del HIV-1 para inhibidores quinoxalínicos

Bioq. Emiliano Barrionuevo

Cátedra de Química Medicinal – IQUIMEFA-UBA-CONICET

Introducción y antecedentes

En el marco de nuestra investigación acerca de inhibidores no nucleosídicos de la transcriptasa reversa (TR) de la Inmunodeficiencia Humana (HIV), se llevó a cabo el *screening* de una biblioteca virtual de 14792 derivados quinoxalínicos, lo cual permitió seleccionar 25 compuestos para su posterior síntesis y evaluación en experimentos *in vitro*.

La relación estructura-actividad (REA) de estos compuestos permitió plantear la siguiente hipótesis para los derivados del tipo amida (1) y carbamato (2):

"El compuesto **2** interacciona con el *non nucleosidic binding pocket* (NNBP), mientras que el **1** lo hace en un sitio alternativo."

Objetivos

Predecir el potencial sitio de unión diferencial de los compuestos **1** y **2** sobre la TR haciendo uso de herramientas de simulación computacional.

Metodología

Utilizando la estructura cristalográfica de la TR (PDB:2OPP) y la herramienta computacional *ghecom* se buscaron potenciales sitios de unión sobre la TR del HIV-1. Posteriormente se llevaron a cabo estudios de Docking Molecular (utilizando AutoDock 4.2.6) sobre cada uno de estos potenciales sitios con los compuestos **1** y **2**, y compuestos de referencia con sitio de unión conocido (NVP, EFZ, GW420867 y HBY097).

I Q U I M E F A

Resultados

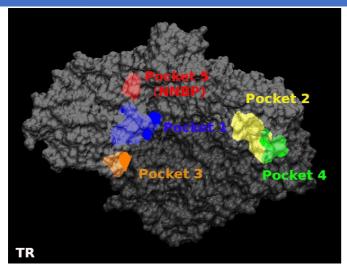
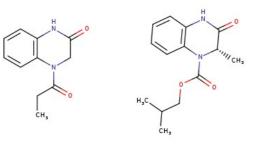
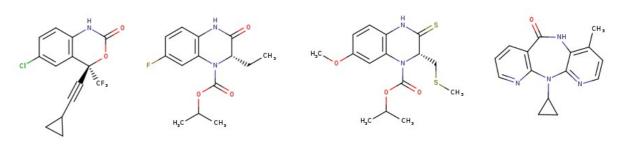




Figura 1. Potenciales sitios de unión sobre la TR

Sitios	1(<i>E</i>)	1(<i>Z</i>)	2(<i>E</i>)	2(<i>Z</i>)	EFZ	GW	HBY	NVP
1	-7,3	-6,8	-7,3	-6,9	-7,4	-6,8	-7,5	-7,2
2	-6,1	-6,6	-7,1	-7,0	-7,0	-6,6	-7,6	-7,2
3	-7,0*	-7,2*	-7,6*	-7,2*	-7,2*	-6,9*	-7,1*	-7,1*
4	-6,0	-5,7	-5,9	-6,1	-6,1	-5,7	-5,4	-5,9
NNBP	-7,1	-7,2	-8,5	-8,6	-9,3	-8,9	-9,6	-8,3

Tabla 1. Valores de ΔG_{DOCK} de los *clusters* de mínima energía en kcal/mol. *No "dockean" dentro del potencial sitio de unión.

1 2 EFZ GW420867 HBY097 NVP

Resultados

Sitios	1 (<i>E</i>)		1 (Z)		12 (<i>E</i>)		12 (<i>Z</i>)		EFZ		GW420867		HB097		NVP	
	n%	ΔG_{DOCK}	n%	ΔG_{DOCK}	n%	ΔG_{DOCK}	n%	ΔG_{DOCK}	n%	ΔG_{DOCK}	n%	ΔG_{DOCK}	n%	ΔG_{DOCK}	n%	ΔG_{DOCK}
1	30	-7,3	29	-6,8	20	-7,1	29	-6,8	36	-6,6	14	-6,5	18	-5,9	44	-6,8
2	33	-5,8	25	-5,7	18	-6,7	21	-7,0	21	-6,6	12	-6,6	10	-6,1	45	-7,2
4	23	-4,8	37	-5,1	18/18	5,6/5,2	9	-4,9	37	-5,0	25	-5,1	8/8	5,2/4,9	72	-7,17
NNBP	92	-7,12	55	-7,2	30	-6,5	38	-8,6	49	-9,3	52	-8,9	15	-9,6	61	-8,3

Verde: Se cumplen los tres criterios mencionados a la derecha para cada compuesto; Amarillo: Se cumple al menos el criterio 1 para cada compuesto; Rojo: No se cumple el criterio 1 ni el 2 y/o el 3 para cada compuesto; Naranja: El compuesto no "dockea" dentro del sitio de unión.

Criterios que sugieren unión al sitio alostérico:

- 1) El cluster más poblado coincide con el cluster de menor ΔG_{dock}
- 2) Cluster más poblado
- 3) Menor ΔG_{DOCK}

Conclusiones y agradecimientos

- Se hallaron cuatro potenciales sitios de unión alostéricos diferentes al NNBP para la TR.
- Los *clusters* con el menor ΔG_{DOCK} sugieren que el compuesto **1** podría estar uniéndose al sitio de unión 1 o al NNBP, mientras que el compuesto **2** podría estar uniéndose al NNBP
- La evaluación de los clusters con mayor porcentaje de población permite reforzar los resultados anteriores: el isómero Z del compuesto 2 estaría uniéndose al NNBP, mientras que el compuesto 1 podría estar uniéndose al NNBP o al sitio de unión 1.

Agradezco a la Universidad de Buenos Aires, al CONICET y al IQUIMEFA por facilitar los medios y el lugar de trabajo para desarrollar las investigaciones correspondientes a esta tesis doctoral.

También agradezco a mis directoras, la Dra. Albertina Moglioni y la Dra. Florencia Martini, por guiarme en este camino, al Dr. Gabriel Jasinski por el apoyo constante en las tareas diarias y a la Dra. Finkielsztein por sus consejos.