

Estudio de las propiedades espectroscópicas de sistemas tautoméricos derivados del **KYNA**

M. Sol Shmidt

Área Química Orgánica

Introducción / Antecedentes

El núcleo 4-quinolinona presenta tautomería prototrópica y existen drogas aprobadas de uso clínico que contienen tanto la forma libre como las estructuras límite N y O-sustituidas. En la búsqueda de nuevos compuestos con potencial actividad biológica, nuestro grupo se avoca a la síntesis de derivados del ácido guinurénico (KYNA, ácido 4-guinolinona-2-carboxílico) considerando las propiedades estructurales del núcleo y los posibles mecanismos de interacción droga-receptor. Presentamos el estudio de la relación estructural de estos heterociclos y sus propiedades espectroscópicas asociada a la existencia de especies en equilibrio prototrópico, a partir de derivados del ácido quinurénico sustituidos en posiciones 1, 3 y 4.

4-quinolinona

 Actividad anticonvulsivante y neuroprotectora, antitumoral reportada

Ciprofloxacina

CO2F

• Cabozantinib (antitumoral, inh. de tirosin kinasa) Actividad ansiolítica y antidepresiva, antiagregante plaquetario, quelante de iones Zn²⁺, hipoglucemiante reportada

Equilibrio tautomérico y compuestos sintetizados

El equilibrio tautomérico I 🖛 II es el resultado de dos efectos opuestos:

- ✓ La tendencia a existir como amida viníloga debido a la estabilidad que logra por solvatación o dimerización a través de la formación de uniones de hidrógeno (predomina en solución)
- ✓ La aromaticidad que proporciona a la molécula el tautómero hidroxi (enólico), que es el predominante en estado gaseoso o en soluciones muy diluidas en solventes no polares

Fórmula general y descripción de los sustituyentes de los compuestos 1 a 6 sintetizados [1]

$\begin{array}{ c c c c c } \hline 1a & CO_2H & - \\ \hline 1b & CO_2CH_3 & - \\ \hline 1c & CO_2C_2H_5 & - \\ \hline 1d & CON(CH_3)C_6H_5 & - \\ \hline 2a & CO_2CH_3 & CH_3 \\ \hline \end{array}$	nd
1b CO2CH3 - 1c CO2C2H5 - 1d CON(CH3)C6H5 - 2a CO2CH3 CH3	
1c CO2C2H5 - 1d CON(CH3)C6H5 - 2a CO2CH3 CH3	
1d CON(CH ₃)C ₆ H ₅ - 2a CO ₂ CH ₃ CH ₃	
2a CO ₂ CH ₃ CH ₃	
2b CO ₂ C ₂ H ₅ CH ₃	
3a CO ₂ CH ₃ CH ₃	
$\begin{array}{c} \textbf{3b} \qquad \textbf{CO}_2\textbf{C}_2\textbf{H}_5 \qquad \textbf{C}_2\textbf{H}_5 \end{array}$	

Compound	R	R'
4 a	CO ₂ H	Н
4b	$CO_2C_2H_5$	Н
4c	CONHCH(CH ₃) ₂	Н
4d	CON(CH ₃)C ₆ H ₅	Н
4e	COC_6H_5	Н
4f	COC_6H_5	CH ₃
4g	p-NO ₂ C ₆ H ₄	Н
5	CO_2CH_3	CH ₃ , R''= H
6	CO ₂ CH ₃	CH_3 , R''= CH_3

La asignación fue confirmada por 2D-RMN (HSQC y HMBC). En la mayoría de los casos los datos correlacionaron con los calculados por métodos computacionales (Gaussian-GIAO).

Efecto de la sustitución 2-CO₂H/2-CO₂R y de la N vs O-alquilación

Las figuras corresponden a ampliaciones de los espectros que ilustran las características más relevantes. La caracterización completa se encuentra en [1].

✓ Incorporación de CO₂H/CO₂R en posición 2: El H-3 en la 4-quinolinona está particularmente protegido (6.03 ppm) debido a la deslocalización de la amida viníloga, y se desprotege por el efecto atractor del CO₂H o CO₂R indistintamente (+0.96 ppm en DCCl₃ y +0.62 ppm en DMSO), y en menor medida los H-5 (+0.39 ppm en DCCl₃) y H-8 (-0.42 ppm en DMSO-*d*₆). No hay variaciones sustanciales en el ¹³C RMN (< 2 ppm).

✓ N- vs O-Sustitución: La N-alquilación conduce a una estructura netamente carbonílica que justifica la desprotección de los H-5, 6, y 7 (DCCl₃ y DMSO-d₆) y 8 (DCCl₃). En el espectro de ¹³C se observa desprotección de C-2 (+7.4 ppm) y 8a (+2.9 ppm) por la presencia de un CH₃ que sustituye al N y un carbonilo en posición 4. La similitud de los espectros de **1** y **2** nos permite inferir que los derivados del KYNA **1**, en solución, se encuentran preferentemente bajo la forma carbonílica.

Los compuestos **O-sustituidos 3** presentan una estructura enólica que produce desprotección del H-8 con valores similares a quinolina (8.24 ppm), y desprotección del H-3 (+0.9 ppm) como consecuencia de la falta de deslocalización electrónica de la enaminona. Los C-3, C-4a, C-5 y C-7 aparecen más protegidos que los isómeros **2**, por la incorporación en C-4 de un grupo fuertemente protector. En todos los casos correlaciona bien con las estimaciones calculadas.

Ácido 3-hidroxiquinurénico y derivados

Espectros de ¹H y ¹³C RMN de 4b en función de la temperatura

✓ Incorporación de OH en posición 3: En el ¹H RMN del ácido 3hidroxiquinurénico (3-HOKA) se observa ligera desprotección de los H-5-8 respecto del KYNA (4a vs 1a). En cambio, cuando se trata de los ésteres o amidas, se produce protección de dichos protones (4b vs 1b y 4d vs 1d).

La hidroxilación de KYNA (**1a**) origina desprotección de los C-2 y 3 y protección del C-4. Estos valores difieren de los calculados. Nuevamente, la hidroxilación de los ésteres y amidas del KYNA produce protección de prácticamente todos los carbonos.

***** Espectros de FT-IR

Los espectros IR de las estructuras límite del sistema tautomérico, 4-quinolinona N-sustituida (**2b**) y 4-quinolinona O-sustituida (**3b**), se diferencian claramente por la banda 1607-1637 cm⁻¹, ausente en las 4-alcoxiquinolinas **3**. La banda ancha de baja a mediana intensidad entre 3500 y 2200 cm⁻¹ en el IR del 3-HOKA (**4a**) correspondiente a estiramientos O-H/N-H asociados, no es tan ancha en el espectro del éster etílico **4b**.

3-HOKA 4a

Equilibrio tautomérico en 3-HOKA

✓ En solución el 3-HOKA existe en equilibrio tautomérico. La formación de uniones de hidrógeno intramoleculares asistidos por resonancia (efecto RAHB), estabiliza las especies A-F y le confiere al compuesto propiedades químicas y espectroscópicas particulares (alta insolubilidad en la mayoría de los solventes, baja reactividad del anillo heterocíclico, propiedades fluorescentes, entre otras).

La esterificación (4b) reduce el número de uniones de hidrógeno posibles.

Conclusiones

El estudio de las características espectroscópicas asociadas a la existencia de especies en equilibrio prototrópico permite conocer cuáles son las estructuras favorecidas, que pueden determinar, por ejemplo, la unión a un receptor. Los espectros simulados a partir de las estructuras minimizadas mostraron buena correlación, con excepción de ácido 3-hidroxiquinurénico, que presenta un comportamiento químico y espectroscópico muy particular.

✓ En estado sólido, la estructura del 3-HOKA fue confirmada por DRX de monocristal. Cristaliza como monohidrato y se establece una unión de hidrógeno intramolecular entre el OH en posición 3 y el carboxilo. Se observa la formación de un dímero supramolecular generado por uniones de hidrógeno. La estructura supramolecular 3D se desarrolla mediante la interacción de estos dímeros y la molécula de agua.

Agradecimientos

A M. Florencia Martini, Guido A. Oppezzo, Lucas Fabian, Juan M. Lázaro Martínez, Albertina Moglioni y M. Mercedes Blanco.

Bibliografía

[1] a) M. M. Blanco, M. Dal Maso, M. S. Shmidt, I. A Perillo, *Synthesis* **2007**, *6*, 829. b) M. S. Shmidt, I. A. Perillo, A. Camelli, M. A. Fernández, M. M. Blanco, *Tetrahedron Lett.* **2016**, *57(9)*, 1022. c) M. S. Shmidt, P. Arroyo Mañez, C. A. Stortz, I. A. Perillo, M. M. Blanco, J. Mol. Struct. **2017**, 1128, 142. [2] Zalibera, L.; Milata, V.; Ilavský, D. ¹H and ¹³C-NMR spectra of 3-substituted 4-quinolones. *Magn. Res. Chem.*, **1998**, *36*, 681–684